Variable Selection for Qualitative Interactions.
نویسندگان
چکیده
In this article we discuss variable selection for decision making with focus on decisions regarding when to provide treatment and which treatment to provide. Current variable selection techniques were developed for use in a supervised learning setting where the goal is prediction of the response. These techniques often downplay the importance of interaction variables that have small predictive ability but that are critical when the ultimate goal is decision making rather than prediction. We propose two new techniques designed specifically to find variables that aid in decision making. Simulation results are given along with an application of the methods on data from a randomized controlled trial for the treatment of depression.
منابع مشابه
Variable selection for qualitative interactions in personalized medicine while controlling the family-wise error rate.
For many years, subset analysis has been a popular topic for the biostatistics and clinical trials literature. In more recent years, the discussion has focused on finding subsets of genomes which play a role in the effect of treatment, often referred to as stratified or personalized medicine. Though highly sought after, methods for detecting subsets with altering treatment effects are limited a...
متن کاملInvestigating the mechanism of the void's physical-semantic effect on social interactions
The depth of the void concept has extended the range of its effects from philosophy to various sciences and even types of art. In architecture, due to the importance of the spacing effect and architectural components on behavior, void finds a different role that seems to be less addressed in contemporary architecture. If void, regardless of its hidden meaning, is referred to as "empty space," a...
متن کاملFAN , AILIN . New Statistical Methods for Precision Medicine : Variable Selection for Optimal
FAN, AILIN. New Statistical Methods for Precision Medicine: Variable Selection for Optimal Dynamic Treatment Regimes and Subgroup Detection. (Under the direction of Dr. Wenbin Lu and Dr. Rui Song.) Due to patients’ heterogeneity and a growing number of specifically targeted treatments, precision medicine draws attentions for customization of therapies and medical decisions for individual patien...
متن کاملAn Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identif...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistical methodology
دوره 1 8 شماره
صفحات -
تاریخ انتشار 2011